AN INTEGRAL TRANSFORM TOGETHER WITH TAYLOR SERIES AND DECOMPOSITION METHOD FOR THE SOLUTIONONLINEAR BOUNDARY VALUE PROBLEMS OF HIGHER ORDER
نویسندگان
چکیده
This work aims to determine the approximate solutions of nonlinear boundary value problems higher order obtained through Aboodh Transform Series Decomposition Method (ATSDM), a method designed find integral and inverse transform problems, expand exponential function, simultaneously decompose terms. The results demonstrate that ATSDM is an excellent trusted can be employed obtain accurate for any problem similar one presented in this work.
منابع مشابه
Higher order multi-point fractional boundary value problems with integral boundary conditions
In this paper, we concerned with positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions. We establish the criteria for the existence of at least one, two and three positive solutions for higher order m-point nonlinear fractional boundary value problems with integral boundary conditions by using a result from the theory of fixed...
متن کاملAn ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملTaylor series method with numerical derivatives for initial value problems
The Taylor series method is one of the earliest analytic-numeric algorithms for approximate solution of initial value problems for ordinary differential equations. The main idea of the rehabilitation of this algorithms is based on the approximate calculation of higher derivatives using well-known finite-difference technique for the partial differential equations. The approximate solution is giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaysian Journal of Science. Series B, Physical & Earth Sciences
سال: 2023
ISSN: ['1394-3065', '2600-8688']
DOI: https://doi.org/10.22452/mjs.vol42no1.6